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From the eigenvalue H^I~b.(A))= E.(A)Itp.(A)), where H x -= H0+AV, one can 
derive an autonomous system of first-order differential equations for the eigen- 
values E.(A) and the matrix elements Vm.(A), where A is the independent 
variable. We perform a Painlev6 test for this system and discuss the connection 
with integrability. It turns out that the equations of motion do not pass the 
Painlev6 test, but a weaker form. The first integrals are polynomials and can be 
related to the Kowalewski exponents. 

Various authors  (Pechukas ,  1983; Yukawa,  1985, 1986; Steeb, 1988; 

Steeb and  Louw, 1986, 1987; Steeb and  van  Tonder ,  1987a, b; Steeb et al., 

1988; N a k a m u r a  and  L a k s h m a n a n ,  1986; Aizu, 1963) discuss the " m o t i o n "  
of  energy levels En(A), where A plays the role of  the time. Let us assume 
that  the e igenfunc t ions  are real or thogonal .  Us ing  the or thogonal i ty  re la t ion 

= (1) 

the comple teness  r e l a t i o n  

1 = E (2) 
n E l  

(O.( x. ,  
(3) 

and  the assumpt ions  that  the eigenvalues are nondegene ra t e  for A --- 0, these 
authors  derive the fo l lowing a u t o n o m o u s  system of first-order o rd inary  
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differential equations: 

dEn 
dA = p" 

dPn=2 E V,,,,V,m 

dVm.= ~, gmk Vkn "Em~-" 
dA k(~,.,.) Ek 

(4) 

- - +  En - Ek Em - E .  

where p,(A) = (0.(A) IVI~b.(A)) and Vm,(h):= (~/,,.(h)lVlq,.(,X))(rn ~ n). 
Notice that equation (3) is no longer true if [~bm(A)) is complex orthogonal. 
If we have a finite-dimensional system with N energy levels, then the 
number of differential equations n is given by n = N +  N +  N ( N -  1)/2-= 
N(3/2+ N/2) .  

Pechukas (1983) and Yukawa (1985, 1986) discussed the dynamical 
system (4) in connection with quantum chaos [compare Steeb and Louw 
(1986) and references therein]. Moreover, Yukawa (1986) showed that the 
system (4) admits a Lax representation and is completely integrable. Con- 
sequently, no chaotic behavior can be expected for system (4). Nakamura 
and Lakshmanan (1984) gave the equations of motion for the eigenfunctionh, 
namely 

d[q/.)_ v,.. 
E~'-~--E, ]~m) (5) dA ~(~) - 

Steeb and Van Tonder (1987a, b) described the connection with the perturba- 
tion theory and considered the extended case HA = Ho+ A~ V~ + A 2 V 2 . Steeb 
and Louw (1987) discussed energy-dependent constants of motion for 
system (4). The dependence of the survival probability as well as some 
thermodynamic quantities (free energy, entropy, specific heat) on A has 
been discussed by Steeb (1988). Let us mention that Aizu (1963) described 
in detail the parameter differentiation of quantum mechanical linear 
operators more than 25 years ago. The results given above can be considered 
as a straightforward application of his results. A survey on energy level 
motion is given by Steeb et al. (1988). Furthermore, we mention that the 
system given above is related to the generalized Calogero Moser system 
(Nakamura and Lakshmanan, 1986; Gibbons and Hermsen, 1984). 

The question of whether or not energy levels can cross was first 
discussed by Hund (1927). He studied examples only and conjectured that, 
in general, no crossing of energy levels can occur. Von Neumann and Wigner 
(1929) investigated this question more rigorously and found the following 
theorem: Real symmetric matrices (respectively the Hermitian matrices) 
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with a multiple eigenvalue form a real algebraic variety of codimension 2 
(respectively 3) in the space of all real symmetric matrices (respectively all 
Hermitian matrices). This implies the famous "no-crossing rule," which 
asserts that a "generic" one-parameter family of real symmetric matrices 
(or two-parameter family of Hermitian matrices) contains no matrix with 
a multiple eigenvalue. We emphasize that this no-crossing rule has only 
been proved for finite-dimensional matrices. "Generic" means that if the 
Hamiltonian admits symmetries, the underlying Hilbert space has to be 
decomposed into the invariant subspaces. 

We perform a Painlev6 test for system (4) and discuss the connection 
with integrability [compare Steeb and Louw (1986) and references therein]. 
System (4) is now considered in the complex domain. 

First we consider the case with two energy levels Eo(A) and El(A). 
Then system (4) simplifies to 

dEj 
dA pj 

dpo 2_ugh_ 
dA Eo - -  E 1 

(6) 
dp, 2 _  VoW: 
dA E1 - Eo 

dVol  Vol(Po -p l )  

dA Eo - E1 

where j = 0, 1 and Vo~ = 1/'1o. The form of system (6) motivates the introduc- 
tion of the following quantities: E := E~-Eo ,  p :=P l -Po ,  and V:= Vol. 
Then system (6) takes the form 

dE 

dp V 2 
- - = 4 - -  (7) 
dA E 

dV Vp 

dA E 

Let us now perform the Painlev6 test for system (7). The system is 
considered in the complex domain. Inserting the ansatz 

E(X) oc E(~ - Ao) ~ 

p(,X) oc p~~ - ;to)" (8) 

v(,~) oc v(~ - Xo)~ 
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and comparing the exponents yields n = q = m - 1, where m is arbitrary at 
this stage. Obviously, all terms in system (7) are dominant. Therefore, system 
(7) is scale invariant under  

A ~ e-lA 

E -~ e-mE 

p ~ e-"+lp 
(9) 

V -.-> E - m + l  V 

Next we determine the coefficients E (~ p(O), and V (~ Requiring that 
E(O), p(O), v(O) # 0, we find m = 1/2, n = q = - 1 / 2 .  Furthermore, p(O) = E(O)/2 
and V (~ •176 with E (~ arbitrary. Consequently, 

E(A) = E(~ - ~ o )  1/2 

E(O) 
p(,~) =--~-- (,x -~o)  -'/~ (10) 

iE (o) 
v(,~)  = �9 (,x -,~o) - ' /~  

4 

is a solution of  system (7), where E (~ and Ao are arbitrary. However, it is 
not the general solution which requires three arbitrary constants. When we 
determine the resonances [see Ablowitz et al. (1980) for the definition], 
using solution (10), we obtain -1 ,  0, 1. When we determine the Kowalewski 
exponents [see Yoshida (1983a, b) for the definition], using solution (10), 
we also find - 1, 0, 1. The Kowalewski exponents 0, 1 can be associated with 
the (polynomial) first integrals of system (7). On inspection, we find that 

2 

II(E,p, V)=~-+ V 2 
(11) 

I~(E, p, v )  = E V  

are first integrals. Then we obtain the scaling behavior 

11(e-l/2E, el/2p, E1/2V)~-elll(E,p, V) 

I2(e-l/2E, el/Zp, ei/2V)= e~ V) 
(12) 

where the exponents of  e give the Kowalewski exponents, namely 0 and 1. 
Thus, the system (7) is algebraic completely integrable. For a detailed 
discussion of the definition "algebraic completely integrable" we refer to 
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van Moerbeke (1988). Inserting the expansion 

E(x) = (~ -,~o) '/~ ~. E~;~(;~ -,~o)J 
j=o 

oo 
p(h)  = (A - h o )  - ' /2 X p(;~(A -h0 ) ;  (13) 

j=o 

oo 

v(;~) = (• -Ao) -'/2 X v~J>(;~ -a0); 
j=0  

into system (7), we find one more arbitrary constant (besides E (~ and Ao), 
so that expansion (13) represents the general solution. System (7) does not 
pass the Painlev6 test, due to the dominant behavior. However, it passes 
the so-called quasi-Painlev6 test, i.e., it admits an expansion of  the form 
(13) with three arbitrary constants [see Steeb and Euler (1988) for more 
details]. 

Obviously, we can also find the general real solution to equation (7), 
namely 

12 
E 2 ( A )  = ~212+ 4II(A - Ao) 2 

1613(A -A~ (14) 
P2(A) = I22 + 4I~(A - Ao) 2 

11122 
V2(A) - I~+4I~(A - A0) 2 

The general solution contains three free parameters 11, 12, and Ao which 
are determined from the initial values E(A = 0), p(A = 0), and V(A = 0). 

For a system with three energy levels, i.e., N = 3 ,  we obtain an 
autonomous system with nine autonomous first-order differential equations. 
Introducing Era, := Em- E, and Pro, :=Pro-P , ,  we can reduce the number 
of  equations to seven. Again we find that the system does not pass the 
Painlev6 test, but the quasi-Painlev6 test. In this case, too, we find that the 
system is algebraic completely integrable. 

The general case can be discussed as follows: Let us assume that the 
Hamiltonian H~ = Ho+AV acts in a finite-dimensional Hilbert space ;~. 
The eigenvalues of H~ satisfy the characteristic equation 

det(H~ - E )  =0  (15) 

This is an algebraic equation 

P(A, E ) ~ A o ( A ) E N + A i ( A ) E N - I +  ' '  "+AN(A) =0  (16) 
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of E of degree N =  dim ~(, with coefficients Aj(A) which are polynomials 
in A. The coupling strength A is now considered in the complex domain. 
The equation P(A, E) = 0 defines a curve in the two-dimensional complex 
projective space with inhomogeneous coordinates A, E. Consequently, the 
functions Aj(A) are holomorphic in A. It follows from function theory 
(Baumgfirtel, 1964) that the roots of equation (15) are branches of analytic 
functions in A with only algebraic singularities. Consequently, system (4) 
passes the quasi-Painlev6 test. The number of eigenvalues of HA is a constant 
k independent of A, with the exception of some special values of A. There 
are only a finite number of such exceptional points. Each level repulsion 
is associated with an exceptional point. At the exceptional points the two 
levels taking part in the repulsion coalesce. The closer the two levels 
approach each other for real values of the coupling strength, the nearer are 
the exceptional points to the real axis. 
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